Закон Ома в дифференциальной форме
При детальном изучении силы тока в сильно неоднородном проводнике закон Ома в обычной форме не подходит, так как он не учитывает локальные параметры проводника. Рассмотрим, например, проводник у которого вдоль оси значительно изменяется электрическое сопротивление и его поперечное сечение. Очевидно, что такой проводник можно представить, как один резистор с интегральным сопротивлением (такое, которое одновременно учитывает все неравномерности), однако если встает вопрос как именно течет ток в таком резисторе, то обычная формулировка закона Ома не применима.
Давайте выведем закон Ома в дифференциальной форме. Рассмотрим проводник с переменным поперечным сечением и сопротивлением вдоль оси z (см. рисунок 1). Разделим этот проводник по середине на две части. Затем полученные два кусочка разделим ещё на две части. Заметим, что при разбиении, каждая часть становится более однородной, нежели проводник в совокупности (см. рис. 2).


Рис.1. Проводник с переменным поперечным сечением и сопротивлением вдоль оси

Рис. 2. Разбиение неоднородного проводника на части
А теперь, внимание! Делим полученные кусочки на две части и так далее до бесконечности! Т.е. проводник теперь состоит из бесконечного числа бесконечно малых проводников. Интерес представляет такой бесконечно малый кусочек, ведь он строго однороден. У него постоянная толщина и постоянное сопротивление. Вообще такой кусочек проводника разумно было бы показать в виде тонкой вертикальной линии, но для наглядности покажем, что проводник толщину имеет хоть она бесконечно мала (см. рис. 3).

Рис. 3. Бесконечно малый проводник
Итак, закон Ома в дифференциальной форме связывает плотность тока, с удельной проводимостью и напряженностью для бесконечно малого участка проводника.
Строгая формулировка закона Ома в дифференциальной может быть записана так: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.
Выведем формулу закона Ома в дифференциальной форме. Запишем связь между потенциальном и напряжённостью
